Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sodium-doped molybdenum back contacts for flexible Cu(In,Ga)Se2 solar cells

Identifieur interne : 000533 ( Main/Repository ); précédent : 000532; suivant : 000534

Sodium-doped molybdenum back contacts for flexible Cu(In,Ga)Se2 solar cells

Auteurs : RBID : Pascal:13-0229204

Descripteurs français

English descriptors

Abstract

The presence of Na in Cu(In,Ga)Se2 (CIGS) is well known to improve the solar cell performance. To incorporate Na into the CIGS absorber, Na-doped Mo (MoNa) back contact layers were grown on stainless steel foils. Three different back contact designs deposited from MoNa sputtering targets with Na concentrations of 3 at.%, 5 at.% and 10 at.% were investigated. A multistage CIGS evaporation process at low (∼450 °C) substrate temperature was used to deposit the absorbers. Measurements from time-of-flight secondary ion mass spectroscopy depth profiles indicate that Na is preferentially collected at the internal interfaces and out-diffuses from the grain boundaries of the multilayer MoNa back contact into the CIGS absorber. From the [Ga]/([In] + [Ga]) grading profiles, a more pronounced Ga dip was found with increasing Na concentration. Moreover, at high Na concentrations (10 at.% MoNa target), a change in the CIGS texture was observed by X-ray diffraction. Best solar cell efficiency of 14.4% was achieved for the 5 at.% MoNa sample without antireflective coating, which is a significant improvement compared to the 9.8% efficiency measured for the Na-free reference.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0229204

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Sodium-doped molybdenum back contacts for flexible Cu(In,Ga)Se
<sub>2</sub>
solar cells</title>
<author>
<name sortKey="Blosch, Patrick" uniqKey="Blosch P">Patrick Blösch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nishiwaki, Shiro" uniqKey="Nishiwaki S">Shiro Nishiwaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chirila, Adrian" uniqKey="Chirila A">Adrian Chirila</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kranz, Lukas" uniqKey="Kranz L">Lukas Kranz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fella, Carolin" uniqKey="Fella C">Carolin Fella</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pianezzi, Fabian" uniqKey="Pianezzi F">Fabian Pianezzi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adelhelm, Christoph" uniqKey="Adelhelm C">Christoph Adelhelm</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>PLANSEE SE, Business Unit Coating, Metallwerk-Plansee-Strasse 71</s1>
<s2>6600 Reutte</s2>
<s3>AUT</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>6600 Reutte</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Franzke, Enrico" uniqKey="Franzke E">Enrico Franzke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>PLANSEE SE, Business Unit Coating, Metallwerk-Plansee-Strasse 71</s1>
<s2>6600 Reutte</s2>
<s3>AUT</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>6600 Reutte</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buecheler, Stephan" uniqKey="Buecheler S">Stephan Buecheler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tiwari, Ayodhya Nath" uniqKey="Tiwari A">Ayodhya Nath Tiwari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0229204</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0229204 INIST</idno>
<idno type="RBID">Pascal:13-0229204</idno>
<idno type="wicri:Area/Main/Corpus">000B18</idno>
<idno type="wicri:Area/Main/Repository">000533</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antireflection coating</term>
<term>Concentration effect</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Crystal defect</term>
<term>Depth profile</term>
<term>Evaporation</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Grain boundary</term>
<term>Indium selenides</term>
<term>Interface</term>
<term>Molybdenum</term>
<term>Molybdenum addition</term>
<term>Multilayer</term>
<term>Multiple layer</term>
<term>Secondary ion mass spectrometry</term>
<term>Sodium</term>
<term>Sodium addition</term>
<term>Solar cell</term>
<term>Sputtering</term>
<term>Stainless steel</term>
<term>Texture</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition molybdène</term>
<term>Cellule solaire</term>
<term>Séléniure d'indium</term>
<term>Addition sodium</term>
<term>Molybdène</term>
<term>Pulvérisation irradiation</term>
<term>Evaporation</term>
<term>Spectrométrie SIMS</term>
<term>Profil profondeur</term>
<term>Interface</term>
<term>Joint grain</term>
<term>Défaut cristallin</term>
<term>Couche multimoléculaire</term>
<term>Multicouche</term>
<term>Sodium</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Effet concentration</term>
<term>Texture</term>
<term>Diffraction RX</term>
<term>Revêtement antiréfléchissant</term>
<term>Acier inoxydable</term>
<term>Na</term>
<term>Substrat acier inoxydable</term>
<term>8460J</term>
<term>8115C</term>
<term>6855L</term>
<term>6855J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Molybdène</term>
<term>Sodium</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The presence of Na in Cu(In,Ga)Se
<sub>2</sub>
(CIGS) is well known to improve the solar cell performance. To incorporate Na into the CIGS absorber, Na-doped Mo (MoNa) back contact layers were grown on stainless steel foils. Three different back contact designs deposited from MoNa sputtering targets with Na concentrations of 3 at.%, 5 at.% and 10 at.% were investigated. A multistage CIGS evaporation process at low (∼450 °C) substrate temperature was used to deposit the absorbers. Measurements from time-of-flight secondary ion mass spectroscopy depth profiles indicate that Na is preferentially collected at the internal interfaces and out-diffuses from the grain boundaries of the multilayer MoNa back contact into the CIGS absorber. From the [Ga]/([In] + [Ga]) grading profiles, a more pronounced Ga dip was found with increasing Na concentration. Moreover, at high Na concentrations (10 at.% MoNa target), a change in the CIGS texture was observed by X-ray diffraction. Best solar cell efficiency of 14.4% was achieved for the 5 at.% MoNa sample without antireflective coating, which is a significant improvement compared to the 9.8% efficiency measured for the Na-free reference.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>535</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Sodium-doped molybdenum back contacts for flexible Cu(In,Ga)Se
<sub>2</sub>
solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>E-MRS 2012 Symposium B</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BLÖSCH (Patrick)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NISHIWAKI (Shiro)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHIRILA (Adrian)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KRANZ (Lukas)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FELLA (Carolin)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PIANEZZI (Fabian)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ADELHELM (Christoph)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>FRANZKE (Enrico)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>BUECHELER (Stephan)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TIWARI (Ayodhya Nath)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>EDOFF (Marika)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SHAFARMAN (William)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>KATAGIRI (Hirono)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>PLANSEE SE, Business Unit Coating, Metallwerk-Plansee-Strasse 71</s1>
<s2>6600 Reutte</s2>
<s3>AUT</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (E-MRS)</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>214-219</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000504170550460</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0229204</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The presence of Na in Cu(In,Ga)Se
<sub>2</sub>
(CIGS) is well known to improve the solar cell performance. To incorporate Na into the CIGS absorber, Na-doped Mo (MoNa) back contact layers were grown on stainless steel foils. Three different back contact designs deposited from MoNa sputtering targets with Na concentrations of 3 at.%, 5 at.% and 10 at.% were investigated. A multistage CIGS evaporation process at low (∼450 °C) substrate temperature was used to deposit the absorbers. Measurements from time-of-flight secondary ion mass spectroscopy depth profiles indicate that Na is preferentially collected at the internal interfaces and out-diffuses from the grain boundaries of the multilayer MoNa back contact into the CIGS absorber. From the [Ga]/([In] + [Ga]) grading profiles, a more pronounced Ga dip was found with increasing Na concentration. Moreover, at high Na concentrations (10 at.% MoNa target), a change in the CIGS texture was observed by X-ray diffraction. Best solar cell efficiency of 14.4% was achieved for the 5 at.% MoNa sample without antireflective coating, which is a significant improvement compared to the 9.8% efficiency measured for the Na-free reference.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Addition molybdène</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Molybdenum addition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Adición molibdeno</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Addition sodium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Sodium addition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Adición sodio</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Sputtering</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Pulverización irradiación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Evaporation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Evaporation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Evaporación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectrométrie SIMS</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Secondary ion mass spectrometry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectrometría SIMS</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Profil profondeur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Depth profile</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Perfil profundidad</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Interface</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Interface</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Joint grain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Grain boundary</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Limite grano</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Défaut cristallin</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystal defect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Defecto cristalino</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Couche multimoléculaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Multilayer</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Capa multimolecular</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Multicouche</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Multiple layer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa múltiple</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Sodio</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Effet concentration</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Concentration effect</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Efecto concentración</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Texture</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Texture</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Textura</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Revêtement antiréfléchissant</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Antireflection coating</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Revestimiento antirreflexión</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Acier inoxydable</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Stainless steel</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Acero inoxidable</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Na</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Substrat acier inoxydable</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>6855L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>210</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>E-MRS Spring Meeting 2012. Symposium B "Thin Film Chalcogenide Photovoltaic Materials"</s1>
<s3>Strasbourg FRA</s3>
<s4>2012-05-14</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000533 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000533 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0229204
   |texte=   Sodium-doped molybdenum back contacts for flexible Cu(In,Ga)Se2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024